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We study the ground state energy EG�n� of N classical O�n� vector spins with the Hamiltonian

H=−�i�jJijS� i ·S� j where the coupling constants �Jij� are arbitrary. We prove that EG�n� is independent of n for
all n�nmax�N�= ���8N+1−1� /2�. We show that this bound is the best possible. We also derive an upper bound
for EG�m� in terms of EG�n�, for m�n. We obtain an upper bound on the frustration in the system, as measured
by F�n����i�j 	Jij 	 +EG�n�
 /�i�j 	Jij	. We describe a procedure for constructing a set of Jij’s such that an

arbitrary given state, �S� i�, is the ground state. We show that the problem of finding the ground state for the
special case n=N is equivalent to finding the ground state of a corresponding soft-spin problem.
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I. INTRODUCTION

In this paper, we study the ground states of N unit classi-

cal O�n� spins, S� i, having a hamiltonian of the form

H = − �
i�j

JijS� i · S� j �1�

where Jij’s are arbitrary real numbers—positive, negative, or
zero. Such Hamiltonians with arbitrary bonds and couplings
are of interest in the context of disordered systems, espe-
cially spin glasses �1
. One of the interesting questions is the
behavior of the ground state energy as the spin space dimen-
sion, n, is increased. For example one can study the behavior
of such models when n is large. In this context, Hastings �2

proved that for N spins beyond a spin space dimension of
nmax�N�= ���8N+1−1� /2� the ground state energy does not
decrease any further and also that this bound is saturated.
Aspelmeier and Moore �3
 have then used this bound in ac-
celerating their numerical simulations of spin glasses. We
provide an alternate proof for this bound. A similar analysis
has been done earlier in the context of correlation matrices
by Grone et al. �4
 and for a relaxed version of maxcut
problem of theoretical computer science �5
.

An interesting question is the behavior of the average
number of nonzero spin space components �average over dis-
order� in the ground state as a function of the number of
spins, N. For the infinite range model with gaussian distrib-
uted Jij’s, this number increases as N� where �= 2

5 �2,3
. Lee,
Dhar, and Young �6
 have numerically determined � for sev-
eral different models.

We also derive both upper and lower bounds on the
ground state energy of O�m� spins in terms of the ground
state energy when they are replaced by O�n� spins �m�n�
keeping the couplings, Jij’s, the same. A stronger bound is
also provided for Ising spins �m=1� when all couplings are
antiferromagnetic and EG�n� is low.

We also consider the problem of finding the ground state
of such a Hamiltonian �7
. We study the inverse problem—
how to find a �nontrivial� Hamiltonian of the form in Eq. �1�
so that a given spin state �S� i� is the ground state. This ques-

tion is trivial for Ising spins. One just assigns a non-negative
Jij if the spins are parallel, and a nonpositive Jij if they are
antiparallel. However with O�n� spins �n�1� the problem is
nontrivial and in some cases there is no �nonzero� solution,
for example, N=3, n�3, with the three spins noncoplanar.
In general, to find the desired set of couplings, Jij’s, we can
express the Hamiltonian in terms of the angles of the spheri-
cal polar coordinates of the spins and set the derivatives with
respect to the angles equal to zero at the angles correspond-
ing to the desired ground state. This gives a set of linear
relations between the couplings, Jij’s. In addition, to ensure
that this extremum is a minimum, and not a maximum or a
saddle point, we have the additional constraint of the Hessian
being positive semidefinite. Finding Jij’s which simulta-
neously satisfy the linear relations as well as the positive
semidefiniteness constraint on the Hessian is nontrivial. It is
a semidefinite programming problem �8
 for which fast algo-
rithms and their software implementations are available.

We provide a simple procedure for obtaining a large class
of such Hamiltonians. However, not all Hamiltonians with

�S� i� as the ground state are obtained by this procedure. We
conjecture a characterization of the Hamiltonians obtained
and give proof of a part of the conjecture.

The special case n=N is of interest as it is equivalent to
the “large-N” models studied earlier �2
. We show an equiva-
lence between the problem of finding the ground state when
n=N and the ground state of a corresponding soft spin prob-
lem. While this duality is interesting in itself, it also clarifies
the conceptual relation between the proof given in this paper
of nmax�N�= ���8N+1−1� /2� and the one given by Hastings
�2
.

The plan of the paper is as follows. In Sec. II we summa-
rize some properties of the correlation matrices of classical
spin states which are found useful in the later sections. In
Sec. III, we prove that for N spins beyond a spin space di-
mension of nmax�N� the ground state energy becomes inde-
pendent of n. That this is the best bound is proved by pro-
viding a sequence of graphs and couplings, one for each N,
such that EG�nmax−1��EG�nmax�. In Sec. IV, we derive both
upper and lower bounds on the ground state energy of O�m�
spins in terms of the ground state energy when they are re-
placed by O�n� spins �m�n� keeping the couplings, Jij’s, the
same. For Ising spins with all couplings antiferromagnetic, in
a special case, a stronger bound is derived. We obtain an*schandra@tifr.res.in
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upper bound on spin frustration, as measured by F�n�
���i�j 	Jij 	 +EG�n�
 /�i�j 	Jij	—we show that F�n�−F���
��n where �n is a constant, independent of Jij’s. In Sec. V,
we provide a procedure for constructing Hamiltonians of the

form in Eq. �1� with arbitrary given state �S� i� as the ground
state. In Sec. VI we demonstrate a duality between the prob-
lem of finding the ground state for the special case of n=N
and a corresponding soft-spin problem. Section VII summa-
rizes the results.

II. SOME PROPERTIES OF CORRELATION MATRICES
OF CLASSICAL SPIN STATES

Summarized below are some properties of correlation ma-
trices which will be useful in the later sections. These prop-
erties are well known in computer science literature �5
.

For an arbitrary state �S� i� of O�n� spins define the �N
	N� correlation matrix, C= �S� i ·S� j
. Explicitly,

C = STS , �2�

where S is the �n	N� matrix with vector of the ith spin as
the ith column. Clearly, C is real, symmetric, has diagonal
elements unity, and can be written as C=ODOT, where O is
an orthogonal matrix and D diagonal.

C is positive semidefinite, i.e., all eigenvalues of C are
non-negative, since for every x�RN, xTCx= �Sx�T�Sx��0.

The number of nonzero �and hence positive� eigenvalues
of C is at most n. This can be seen as follows: Each row of
C is a linear combination of the n rows of S implying that the
number of linearly independent rows of C is at most n. Di-
agonalizing C, let C=ODOT where O is an orthogonal ma-
trix and D diagonal with �let us say� first k eigenvalues posi-
tive and rest zero. The rows �columns� of O are mutually
orthogonal and hence linearly independent. �DOT� now has k
linearly independent rows and thus ODOT also has k linearly
independent rows. The number of linearly independent rows
of C we have already argued to be at most n. Hence the
number of positive eigenvalues of C is at most n.

Conversely, if C is a real, symmetric matrix with diagonal
elements unity and having n or fewer positive eigenvalues
and rest zero, then there exists a spin state of classical O�n�
unit spins for which it is the correlation matrix. To see this, C
being real and symmetric, can be diagonalized as C
=ODOT= �O�D��O�D�T where O is an orthogonal matrix
and D diagonal with first k��n� diagonal entries positive.
The last �N−n� rows of �O�D�T are known to be zero and
we drop them to define an �n	N� matrix S such that C
=STS. Since cii=1∀ i each column of S can be interpreted as
a unit classical O�n� spin, C being their correlation matrix.

III. INDEPENDENCE OF THE GROUND STATE ENERGY
FROM n FOR n�nmax„N…

Consider the variation of the ground state energy EG�n� as
a function of the spin space dimension n of the O�n� spins
keeping the couplings, Jij’s, the same. For n��n we have
EG�n��EG�n�� because for any state of O�n� spins we can

construct a corresponding state of O�n�� spins with the same
value of energy by adding �n�−n� zero components to each
O�n� vector. Also for any n�N we have EG�n�=EG�N� be-
cause N spins span an at most N dimensional subspace of the
n dimensional spin space implying that by an appropriate
choice of basis we can make all coordinates after the first N
coordinates zero and by dropping them we get an O�N� spin
state with the same value of energy.

Theorem 1. For N classical unit O�n� vector spins with

Hamiltonian H=−�i�jJijS� i ·S� j, where �Jij� are any real num-
bers, the ground state energy EG�n�=EG�nmax� for all
n�nmax where

nmax�N� = ��8N + 1 − 1

2 � . �3�

Here �x� for x�R is the greatest integer not greater than x.
Proof. Let us summarize the idea of the proof before get-

ting into the details. Suppose we have a ground state which
has more than nmax�N� dimensions. Starting from the corre-
lation matrix of this state we construct another matrix which
is the correlation matrix of a spin state which is embedded in
one less spin space dimension but has the same energy. This
construction always works whenever the spin state is embed-
ded in more than nmax�N� dimensions. Since, as shown
above, EG�n��EG�n�� for n��n this implies that for
n�nmax, EG�n�=EG�nmax�, as desired.

We now discuss the proof. When the spins are O�N� vec-

tors let �S� i� be a ground state. Consider the correlation ma-

trix, C, with elements cij =S� i ·S� j for all i, j. Diagonalizing C,
we can write C=OTDO with D a diagonal matrix and O an
orthogonal matrix. Let

D = �
d1 . . . 0 0 . . . 0

. . . . . . 0 . . . 0

0 . . . dk 0 . . . 0

0 . . . 0 0 0

. . . . . . . . . . . .

0 . . . . . . 0

� , �4�

where the first k diagonal entries of D are positive and rest
zero.

Consider C�=OT�D+rB�O where B is symmetric with
Bij =0 if i�k or j�k. This leaves 1

2k�k+1� free parameters
in B and ensures that C� is also symmetric and the zero
eigenvalues of C and the corresponding eigenvectors are not
perturbed. Also, let B satisfy

�OTBO
tt = 0 �5�

for all t=1,2 , . . . ,N. This ensures that the diagonal elements
of C� remain unchanged.

The 1
2k�k+1� free parameters of B must satisfy the N lin-

ear homogenous equations �5�. Hence whenever 1
2k�k+1�

�N such a nonzero B will exist and we can increase r till
one of the first k eigenvalues of C becomes zero. Thus we
obtain a matrix C� which is the correlation matrix of a spin
state embedded in �k−1� dimensions. �The same argument
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goes through if r is negative and we increase 	r	.� As shown
in the next paragraph, this spin state is a ground state. Thus
applying this procedure repeatedly we obtain a ground state
embedded in at most ���8N+1−1� /2� dimensions.

The matrix B chosen above is such that for r small enough
C�=C
rOTBO are both correlation matrices of valid spin
states with energy −�i�jJijcij 
r��i�jJij�OTBO�ij
. Since we
started from a C which was a ground state this can happen
only if �i�jJij�OTBO�ij =0, i.e., if OTBO was a “neutral di-
rection.” Thus the correlation matrix C� also corresponds to a
ground state.

Hence we have provided a construction for continuously
deforming a ground state and bringing it to lie in an at most
nmax�N� dimensional subspace of the spin space without
changing the energy, thus proving the desired result.

Theorem 2. The bound in theorem 1 is the best possible,
i.e., there exist values of �Jij� such that EG�nmax��EG�nmax

−1� where nmax�N�= ���8N+1−1� /2�.
Proof. Consider three spins S�p, S�q, and S�pq with Jpq=−J

and Jp�pq�=Jq�pq�=�2J; see Fig. 1. It is easy to see that for

this system of three spins, in the ground state S�p is perpen-

dicular to S�q �and S�pq is along their angle bisector�.
Now consider a complete graph of k spins such that each

edge is itself an S2 subgraph, as shown in Fig. 1. While
constructing the ground state of such a system we need to
consider only the k spins at the joints of these S2 subgraphs
because in the minimum energy configuration each of the
spins which are internal to the S2 subgraphs will lie along the
angle bisector of its two neighbors. The contribution of any

of the S2 subgraphs, let us say consisting of the spins S�p, S�q

and S�pq, will get minimized if S�p and S�q are perpendicular to

each other. The k spins at the joints between S2 subgraphs
can be arranged perpendicular to each other only in an at
least nmax=k dimensional spin space thus completing the
proof.

We note that at finite temperature the free energy does not
remain independent of n even for large n. This may be seen
in, both, the high as well as low temperature expansions for
the free energy.

IV. BOUNDS ON THE GROUND STATE ENERGY

We have seen that EG�m��EG�n� for m�n. Now we will
derive an upper bound on EG�m� in terms of EG�n�. This
result �theorem 3� generalizes a known result on the perfor-
mance of Goemans-Williamson algorithm for maxcut prob-
lem of theoretical computer science �5
. The result by Goe-
mans and Williamson, when translated into statistical physics
language, would correspond to the special case of m=1.
Theorem 4 is a translation of a known result on maxcut prob-
lem into statistical physics language �5
. The connection be-
tween the problem of finding the ground states of Ising spins
and maxcut problem has been known before �9
.

It will be helpful to summarize the overall strategy before
getting into the details. Suppose the various possible orien-
tations of O�m� spins occur according to an arbitrary given
probability distribution. Then the energy is also a random
variable and the expected value of the energy will always be
greater than or equal to the ground state energy, i.e., EG�m�
�E�Hm
, where E�Hm
 denotes the expected value of the
energy of O�m� spins. If we choose the probability distribu-
tion in such a way that we are able to bound E�Hm
 in terms
of EG�n� from above we would have obtained the desired
result.

Now we give the derivation in detail. First we define a
randomized procedure for obtaining an O�m� state, say

�S� i�m��, from the ground state �S� i�n�� � of O�n� spins. In the spin
space of O�n� spins randomly choose an m-dimensional sub-
space and project all the spins onto it. Normalize the O�m�
vectors thus obtained. Clearly different O�m� states are ob-
tained by this procedure depending on which m-dimensional
subspace was chosen for projection. The expectation value of

the O�m� energy is E�Hm
=−�i�jJijE�S� i�m� ·S� j�m�
. Now if
Pmn denotes a projection operator from n to m dimensions

E�S� i�m� · S� j�m�
 =
 PmnS� i�n�� · PmnS� j�n��

	PmnS� i�n�		PmnS� j�n�	
dPmn � fmn��ij� ,

�6�

where �ij is the angle between S� i�n�� and S� j�n�� and the integral
is over all projection operators Pmn with equal measure. As
an example, in spherical polar coordinates,

f23��� = 

�2=0


 

�1=0

2
 sin �2�cos � − cos �1 sin2�2 cos��1 − ���
4
�1 − cos2�1 sin2�2

�1 − sin2�2 cos2��1 − ��
d�2d�1. �7�

S2

Sp Sq
S2

S2 S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

J2J2

JSp Sq

Spq

SqSp

Complete graph
of k spins where

N=(1/2)k(k+1)

each edge is itself
an subgraph

N=3 N=6 N=10

An subgraph between two spins and means:

FIG. 1. Sequence of examples for which EG(nmax�N�)
�EG(nmax�N�−1). Shown are three of those members of the se-
quence for which ��8N+1−1� /2 is an integer �such N’s are
3 ,6 ,10, . . . = 1

2k�k+1�
. The rest of the members are obtained by
adding appropriate number of free spins to the example of the last N

for which ��8N+1−1� /2 is an integer, e.g., N=8 example has two
more free spins added to the N=6 example.
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By reversing the direction of S� i�n�� we observe that

fmn�
 − �ij� = − fmn��ij� . �8�

Also �1− fmn���
 / �1−cos ���0 for all �� �0,

. Hence we
can find a lower bound on �1− fmn���
 / �1−cos ��, denoted
by �mn, which gives

fmn��� � �1 − �mn� + �mn cos � . �9�

Also replacing � by �
−�� in this inequality we get

− fmn��� � �1 − �mn� − �mn cos � . �10�

For Jij �0, using Eq. �9�, we get

− Jij fmn��ij� � − �1 − �mn�Jij − �mnJij cos �ij . �11�

For Jij �0, using Eq. �10�, we get

− Jij fmn��ij� � �1 − �mn�Jij − �mnJij cos �ij . �12�

Summing Eq. �11� over all those ij pairs for which
Jij �0 and Eq. �12� over all those ij pairs for which Jij �0
and adding we get

E�Hm
 = − �
i�j

Jij fmn��ij� � �1 − �mn��
i�j

	Jij	 + �mnEG�n� .

�13�

Now the minimum value of a random variable is always less
than or equal to its expectation value. Therefore, we have the
following.

Theorem 3. For �m�n�

EG�n� � EG�m� � �1 − �mn��
i�j

	Jij	 + �mnEG�n� , �14�

where �mn is the minimum value of �1− fmn���
 / �1−cos ��
over the interval �� �0,

 and fmn��� has been defined
above or, rearranging the inequality, �1 /�mn�EG�m�− ��1
−�mn� /�mn
�i�j 	Jij 	 �EG�n��EG�m�.

As an example, it is easy to show �5
 that for m=1 and n
arbitrary, f1n��ij�=1−2��ij /
� and �1n�0.878 56. We have
determined f23 and f34 numerically by representing them as
integrals in spherical polar coordinates; see Eq. �7�, for in-
stance. The graphs of f34��� and q34���= �1− fmn���
 / �1
−cos �� are shown in Fig. 2. We find that �23�0.96 and
�34�0.98.

As a specific instance, for the triangular lattice antiferro-
magnet EG�1�=− 1

3J implying that −�0.52�J�EG�2��− 1
3J. It

is known that EG�2�=−�0.5�J which compares very well with
the nontrivial part of the inequality. Now, we prove a stron-
ger bound for a special case of Ising antiferromagnets.

Theorem 4. For the special case of m=1, let all couplings,
Jij, be antiferromagnetic. Then for the case �EG�n�
���i�j 	Jij 	 � ���−0.69� we have the stronger bound

EG�n� �15�

�EG�1� �16�

��− �
i�j

	Jij	� 2



arccos� EG�n�

�
i�j

	Jij	� + �
i�j

	Jij	 . �17�

Proof. Again using the randomized procedure in the deri-

vation of theorem 3, from the ground state �S� i�n�� � of O�n�
model, various Ising states are obtained with different prob-
abilities such that E�H1
=−�i�jJij +�i�jJij�2 /
�arccos xij

where xij =S� i�n�� ·S� j�n�� �using f1n��ij�=1−2��ij /
�
.
Consider the function arccos x. Draw the oblique tangent

from �1,0� to the curve, intersecting the curve tangentially at
�� , arccos ��. Consider the function h�x� which is the same as
arccos x for x�� and the same as the tangent for x� �� ,1
.

Clearly, arccos xij �h�xij� and since all Jij �0,

E�H1
 �18�

�
2



�
i�j

Jijh�xij� − �
i�j

Jij �19�

�−
2


��
i�j

	Jij	�h��
i�j

	Jij	

�
p�q

	Jpq	
xij� − �

i�j

Jij , �20�

where the last inequality uses the convexity of h�x�.
Since the minimum value of a random variable is less

than or equal to its expectation value, we have EG�n�
�EG�1��E�H1
. Also, for x�� we have h�x�=arccos x and
the desired inequality is proved.

In the presence of antiferromagnetic Jij’s, there may not
exist any spin configuration that minimizes the energy of
each individual bond to −	Jij	. One of the possible measures
of the frustration of spins is

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3

f,q

Angle between the O(4) spins (in radians)

f
q

FIG. 2. Functions f34��� and q34���= �1− f34���
 / �1−cos ��.
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F�n� �
�
i�j

	Jij	 + EG�n�

�
i�j

	Jij	
. �21�

We can consider spin frustration as arising in two steps:
First we choose the Jij’s but do not put any restriction on the
dimensionality of the spin space—it is allowed to be as large
as desired for the minimization of energy. The frustration of
this system will be F��� which will be the same as
F(nmax�N�), where nmax�N�= ���8N+1−1� /2�, because
EG�n�=EG(nmax�N�) for n�nmax�N�. To obtain the actual
O�n� system we now restrict the number of dimensions in the
spin space to n, thus increasing the spin frustration from
F�nmax�N�� �same as F���
 to F�n�.

Theorem 5. If �m�n�

EG�m� − EG�n�

�
i�j

	Jij	
� 2�1 − �mn� . �22�

As a particular case,

F�n� − F„nmax�N�… � 2�1 − �nN� , �23�

where �mn are the same as in theorem 3.
Proof. In theorem 3, subtract EG�n� throughout, divide by

�i�j 	Jij	 and observe that EG�n� /�i�j 	Jij 	 �−1 thus com-
pleting the proof.

In particular, for all n, F�n�−F(nmax�N�)�F�1�
−F(nmax�N�)�2�1−�1N��0.242 88 �independent of N, as
discussed at the end of theorem 3�.

V. PROCEDURE FOR CONSTRUCTING A MODEL
WITH AN ARBITRARY GIVEN GROUND STATE

For N classical spins of O�n� type let �S� i�� be a given state.
We want to construct a Hamiltonian with only two-spin

Heisenberg type interactions which has �S� i�� as the ground
state. The following procedure constructs a Hamiltonian of

the form in Eq. �1� �up to a constant� which has �S� i�� as the
ground state.

�1� For the given ground state �S� i�� construct the correla-

tion matrix, C�, such that cij� =S� i� ·S� j�∀ i , j=1,2 , . . . ,N.
�2� Let C�=O�D�O�T where O� is an orthogonal matrix

and D� diagonal with, let us say, the first k diagonal entries
nonzero and the rest entire matrix zero.

�3� Construct an �N	N� auxilliary matrix G as follows:

G = �G1 G2

G3 G4
� , �24�

where G1 is a �k	k� matrix, etc. Moreover, choose G1=0,
G2=0, G3=0, and G4 to be any �N−k�	 �N−k� real, sym-
metric matrix with all eigenvalues nonpositive.

�4� Define J= �Jij
=O�GO�T.

Theorem 6. For the Hamiltonian H=−�i,j=1
N JijS� i ·S� j thus

constructed, the spin state �S� i�� is the ground state.

Proof. For any spin state �S� i�, construct the correlation

matrix C= �cij
= �S� i .S� j
 and diagonalize it,

C = ODOT, �25�

where O is an orthogonal matrix and D is diagonal with all
eigenvalues non-negative.

Also for the matrix J defined above let

�− J�T = ÔD̂ÔT, �26�

where Ô is an orthogonal matrix and D̂ is diagonal. Since J
is negative semidefinite, �−J� is positive semidefinite, thus

the entries of D̂ are non-negative.
Now H=Tr(�−J�TC). Using Eqs. �25� and �26� and re-

peatedly using Tr�AB�=Tr�BA� we get H=Tr�WTW
�0

where W=�D̂ÔTO�D. Therefore, for any state �S� i�,

H � 0. �27�

For �S� i��, by construction, H=Tr(�−J�TC�)=0 implying that

�S� i�� is a ground state of H.
Although a large number of Hamiltonians with arbitrary

given state �S� i�� as the ground state can be obtained by this
procedure, not all the Hamiltonians with this property are
obtained. For instance, it can be easily checked that for three
Ising spins, one up and the other two down happens to be a
ground state when all three couplings are antiferromagnetic
with equal strength, but this set of couplings can not be ob-
tained by the above procedure for any allowed choice of the
matrix G4. Thus we would like to characterize which Hamil-
tonians can be obtained by this procedure for a given ground
state and which Hamiltonians cannot be obtained.

We expect that a Hamiltonian with �S� i�� as the ground
state is obtained by this procedure if and only if upon replac-
ing the given spins by spins with any higher spin space di-
mension, keeping Jij’s the same, the ground state energy re-
mains the same. The if part is our conjecture while the only if
part is proved as follows: for any ñ�n, by augmenting each

vector of �S� i�� by �ñ−n� zeroes, we can obtain a state with the
value of the Hamiltonian Hñ=0. Since the Hamiltonian is
expressible as the trace of the product of two symmetric
positive semidefinite matrices its value cannot be negative as
in Eq. �27�, implying that the ñ dimensional state thus ob-
tained is the ground state of O�ñ� spins. Therefore, for ñ
�n we have EG�ñ�=EG�n� thus completing the proof. This
proof is consistent with the case of three Ising spins with
antiferromagnetic couplings discussed above because if we
replace three Ising spins by XY spins the ground state energy
decreases from − 1

3J per bond to − 1
2J per bond.

VI. DUALITY OF THE PROBLEM OF FINDING
THE GROUND STATE WHEN n=N

It is interesting to compare Hastings’ proof of theorem 1
�2
 with the proof given here. We make this comparison by
demonstrating a close relation between the problem of find-
ing the ground state when n=N and a corresponding soft spin
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problem. The case of n=N is equivalent to the “large-N”
model studied by Hastings and others �2
. Apart from pro-
viding an understanding of the relation between the two
proofs of theorem 1, this duality is interesting in itself. The
duality derived below is a special case of semidefinite pro-
gramming duality. We follow the approaches in �8,10
. The
analysis leading to theorems 7 and 8 below amounts to spe-
cializing the general approach of �8,10
 to the case of our
interest.

The problem of finding the ground state of N classical
O�n� spins having a Hamiltonian of the form H
=−�i�jJijS� i .S� j is

Problem P1�n�

minimize − �i�j
JijS� i · S� j

subject to constraints

S� i · S� i = 1 and S� i � Rn ∀ i = 1 . . . N

By the properties of correlation matrices discussed in Sec.

II, for each state �S� i� of N classical O�n� unit vectors the
corresponding correlation matrix, C, satisfies the constraints
of problem P2�n�, below, and conversely, any matrix, C, sat-
isfying the constraints of P2�n� is a correlation matrix of a

state �S� i� of N classical O�n� unit vectors. Moreover, this

correspondence is such that −�i�jJijS� i .S� j =−�i�jJijcij imply-
ing that the problems P1�n� and P2�n� are equivalent.

Problem P2�n�

minimize − �i�j
Jijcij

subject to constraints

cii = 1 ∀ i = 1 . . . N

CT = C and has all eigenvalues non-negative

number of positive eigenvalues of C � n

C = �cij
 being an �N 	 N� matrix

Consider the special case of n=N, i.e., the number of spin
space dimensions being equal to the number of spins. For
this case the constraint in P2�n�, that the number of positive
eigenvalues of the matrix C be at most n, becomes redundant
and can be dropped.

The constraints in the remaining problem P�n=N� can be
accounted for by taking the matrix C to be of the form

C = I + �
i�j

cijMij �28�

with all eigenvalues of C non-negative, I being the identity
matrix and Mij the matrix with �ij�th and �ji�th entries 1 and
rest zero, i.e.,

Problem P2�n = N�

minimize − �i�j
Jijcij

subject to constraints

C is a real �N 	 N� matrix

C = I + �i�j
cijMij

C has all eigenvalues non-negative

Define a symmetric matrix CD=CD
T and a Lagrangian, L as

L�cij,cD�kl��i�j,k�l �29�

=− �
i�j

Jijcij − Tr�CDC� �30�

=− �
i�j

Jijcij − ���
i=1

N

cD�ii�� + 2�
i�j

cijcD�ij�� �31�

=− �
i�j

�2cD�ij� + Jij�cij − �
i=1

N

cD�ii�. �32�

The problem P2�n=N� is then equivalent to

EG�n = N� �33�

=minall cij
maxCD�0,CD

T =CD
L�cij,cD�kl��i�j,k�l, �34�

where CD�0 means that all the eigenvalues of CD are non-
negative.

To see this equivalence, observe that for any C having a
negative eigenvalue �let us say the first� we can choose CD to
be CD=�2v1v1

T where v1 is the eigenvector of C correspond-
ing to the first eigenvalue and then Tr�CDC�=�2Tr�v1

TCv1�
�0. By choosing � to be large, the maximization over CD
results in L becoming +�. Thus all C’s with any eigenvalue
negative will get ignored when we minimize over cij’s and
we need to consider only C’s with all eigenvalues non-
negative. When C has all eigenvalues non-negative, let C

=ODOT and for any allowed CD let CD= ÕD̃ÕT. Then

Tr�CDC� �35�

=Tr���D̃ÕTO�D���D̃ÕTO�D�T
 �36�

�0. �37�

Thus for a C with all eigenvalues non-negative

maxCD�0,CD
T =CD

L�cij,cD�kl��i�j,k�l = − �
i�j

Jijcij �38�

proving the desired equivalence.
It is easy to see that if in Eq. �34� we instead perform the

minimization before the maximization, the resulting value
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can only decrease. We will call this resulting problem as the
dual problem and denote its value by −EG

D:

− EG
D �39�

=maxCD�0,CD
T =CD

minall cij
L�cij,cD�kl��i�j,k�l �40�

�minall cij
maxCD�0,CD

T =CD
L�cij,cD�kl��i�j,k�l �41�

=EG�n = N� . �42�

By arguments similar to the equivalence between P2�n=N�
and Eq. �34� the dual problem Eq. �40� can easily be shown
to be equivalent to

max − �i=1

N
cDii

subject to constraints

cDij = − 1
2Jij ∀ i � j

CD = CD
T and has all eigenvalues non-negative

CD being a real �N 	 N� matrix.

By arguments similar to those given above this is the
same as

Problem dual

min �i=1

N
S� i

D2

subject to constraints

S� i
D . S� j

D = − 1
2Jij ∀ i � j

S� i
D � RN ∀ i = 1 . . . N

The problem P�n=N� and the dual satisfy the require-
ments of the strong duality theorem of semidefinite program-
ming �see, for instance, theorem 3.1 of �8
� which then im-
plies the following.

Theorem 7:

EG�n = N� = − EG
D. �43�

Using this in Eqs. �30�, �32�, and �38�, we also conclude that

if �S�
i
*� is the ground state of the unit spin problem with n

=N and �S�
i

D*� is the ground state of the dual problem then
the corresponding correlation matrices satisfy

Tr�C*C
D
*� = 0. �44�

Since C* and C
D
* both have all eigenvalues non-negative,

rewriting the trace as in Eq. �36� above, Eq. �44� implies that

C*C
D
* = 0 �45�

or in terms of the spins

�
j=1

N

�S�
i
* · S�

j
*��S�

j

D* · S�
k

D*� = 0 ∀ i,k . �46�

So we have seen that the problems of finding the ground

states P�n=N� and dual are closely related. If �S�
i
*� is the

ground state of P�n=N� and �S�
i

D*� of dual then EG�n=N�
=−EG

D and Eqs. �46� hold. Conversely, if for some S� i�RN,

S� i ·S� i=1∀ i and S� i
D�RN with S� i

D ·S� j
D=− 1

2Jij ∀ i� j and the
corresponding correlation matrices satisfy C*C

D
* =0 then

we also have Tr�C*C
D
*�=0 which means that −�i=1

N S� i
D2

=−�i�jJijS� i ·S� j. Since EG�n=N��−EG
D the only possibility is

that �S� i� and �S� i
D� are the respective ground states. Thus for

any pair of valid states of P�n=N� and dual if the product of
the correlation matrices is zero then they are respective
ground states.

Therefore, we have

Theorem 8. �S�
i
*� is the ground state of P�n=N� and �S�

i

D*�
of dual if and only if the corresponding correlation matrices
satisfy

C*C
D
* = 0. �47�

Remarks
�1� The connection between our proof of theorem 1 above

and Hasting’s proof in �2
 can now be seen in light of this
duality. Our proof counted the number of nonzero eigenval-
ues of the correlation matrix C while Hasting’s approach
amounts to counting the zero eigenvalues of the correlation
matrix CD of the dual �see theorem 8 above�. The parameters
�i in �2
 may be identified with cDii in the above discussion.

�2� The parameters �i in Hasting’s treatment �2
 �which
correspond to cDii in our treatment at zero temperature� con-
tinue to remain defined even at finite temperature. Moreover,
the expression for average energy at finite temperature in
Hasting’s treatment is VkT−�i=1

V �i �Eq. �9� in �2
, the V in
this expression is the same as N in our notation
. Recogniz-
ing that �i are the same as cDii this form is the same as the
Hamiltonian of our dual problem except for the term linear
in T. It would therefore be interesting if some form of this
duality holds at finite temperatures also.

VII. SUMMARY

We showed that as we increase the spin space dimension,
n, the ground state energy, EG�n�, becomes independent of n
beyond a spin space dimension of nmax�N�, and this bound is
the best possible. For m�n we derived an upper bound for
EG�m� in terms of EG�n�, the lower bound was trivial. A
stronger version for a special case of m=1 was also proved.
Similar bounds on EG�m�−EG�n� and a measure of spin frus-
tration, F�n�, were derived. A procedure was given for con-
structing a hamiltonian with an arbitrary given spin state,

�S� i��, as the ground state. For the special case n=N, the prob-
lem of finding the ground state was shown to be equivalent
to another soft-spin problem.
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